
 

©20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current 

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective 

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final 

publication is available via https://doi.org/10.1109/IE.2013.24 

 

A Communication Framework for the Internet of 

People and Things Based on the Concept of Activity 

Feeds in Social Computing 
 

Thomas Vilarinho, Babak A Farshchian, Jacqueline Floch and Bjørn Magnus Mathisen 

SINTEF ICT 

SINTEF 

Trondheim, Norway 

{thomas.vilarinho , babak.farshchian, jacqueline.floch, bjornmagnus.mathisen}@sintef.no 

 

 

Abstract— Social networks connect people while internet 

of things platforms connect things. Although both 

platforms use various communication tools in efficient 

ways, platforms for things often don't communicate and 

interoperate with social networks. As a consequence, there 

is a lack of unified programming interfaces and platforms 

to enable internet-based interactions between people and 

things. This hinders deployment of services where people 

and things need to co-exist such as in ambient assisted 

living and collaborative sensing scenarios. 

We propose activity feeds as a unified communication 

framework to address this integration challenge. The 

activity feed concept is widely deployed in social networks 

and recently also in internet of things platforms. It is a 

flexible and easy-to-understand concept. We propose a 

communication framework based on activity feeds 

consisting of a set of concepts, a set of patterns for using 

activity feeds, an API for developing applications, and a 

reference implementation of the framework on smart 

phones. 

We describe how we tested this framework in two different 

applications in the areas of ambient assisted living and 

crisis management. For these two applications we were 

able to easily deploy the framework by invoking the 

activity feed API. We report on how we use 

communication patterns based on activity feeds and how 

the framework managed to facilitate people and thing 

communication. 

 
Keywords-component; Activity Stream; Activity Feed; Internet 

of Things; Social Computing; Ambient Intelligence; Ubiquitous 

Computing; Computer Supported Cooperative Work; Ambient 

Assisted Living; Crisis Management;  

I.  INTRODUCTION 

Internet of Things (IoT) is upon us and already offers a 

number of new opportunities for using ICT in innovative ways 

in order to solve societal problems. Sensing systems allow us 

to sense environmental changes such as increased air 

pollution. Health- and lifestyle-related devices and sensors 

allow elderly and people with chronic diseases to live and 

function independently. At the same time these scenarios 

introduce highly sophisticated technical devices into our 

everyday lives. Seamless and transparent communication 

between our human systems and the technological 

infrastructure of IoT, that we are so increasingly depending 

upon, is crucial. 

Traditionally in the distributed computing world, 

communication and information sharing technologies have 

been created for two different audiences: "Things" (e.g. 

devices and sensors) and “People”. Things have talked 

languages that people without specialized training have 

difficulties to understand, while people have been talking 

languages that things often don't understand. This issue was 

raised by Tim Berners-Lee et al. in the concept of the semantic 

web[1] where web pages are not only made for human 

consumption but also for processing, understanding and 

reasoning by computers. Though the semantic web in its 

outset had little to do with IoT and was aimed at intelligent 

software agents, the basic thesis of the semantic web has 

become even more relevant with the advent of IoT. Our day-

to-day and minute-to-minute encounter with technological 

"things" needs a common lingua franca. 

In our research we explore the affordances of physical 

things in extending the interaction possibilities among 

physically distributed groups of people. We believe that 

physical things, due to their specialized form factors and 

affordances, can offer rich and natural interaction mechanisms 

in many social interaction scenarios. Our aim is to use things 

to enrich the digital representations of people and things so 

that interactions in the digital world can become richer and 

more natural and resemble those in the physical world, in what 

we call Physically Embedded Social Interaction (PESI). 

Through an iterative process of developing and evaluating a 

set of proof-of-concept prototypes we have developed a 

communication framework for PESI. This framework is based 

on well-known concepts and standards from social computing, 

especially the concept of Activity Feed that we use as the main 

means to support communication among people and things. 

This paper discusses the applicability of Activity Feeds as a 

basis for a communication framework for PESI. The rest of 

this paper is organized as follows. First we will introduce the 

main concepts of the PESI communication framework, and 

illustrate the concepts through two scenarios, one from crisis 



 

©20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current 

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective 

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final 

publication is available via https://doi.org/10.1109/IE.2013.24 

 

management and one from ambient assisted living. We then 

describe the current implementation of this framework for 

Android devices called UbiShare. We compare our 

contribution to state of the art, and also shortly describe our 

research methodology. We conclude the paper with some 

direction for future research. 

II. MAIN CONCEPTS AND USE CASES 

The central concepts for our work are those of Activity 

Feed (shortly called a Feed in the rest of this paper) and 

Activity. Most internet users are familiar with feeds in various 

forms. Figure 1 shows a feed from a popular internet-based 

service. Activities are published continuously into a Feed and 

are often visually shown in a chronological order, with the 

latest Activity at the top of the Feed. This is done to allow the 

users to see the latest activities, while hiding activities that 

have already been seen by the user. In some cases, Activities 

are also displayed to the user according to other criteria, e.g. 

popularity and context in Facebook. In the next two sections 

we describe the concepts of Feed and Activity in more detail. 

 
Figure 1: An example of an Activity Feed from the web. 

A. Activity Feeds 

Activity Feeds (also known as Activity Streams[2]) were 

popularized mainly by social networking applications as a 

means for showing the "latest news" from websites and social 

networks. Feeds have been implemented in different ways by 

different services, and partly standardized by the OpenSocial 

APIs[3] and the Activity Streams specification[2]. Various 

implementations have converged into the concept of a Feed as 

a chronological list of events related to an entity and which 

other entities can subscribe to (and possibly publish to). A 

Feed as used in our framework has the following properties: 

 A Feed is assigned to one entity and is owned by that 

entity. In our framework these entities are currently 

people, things and communities (to be discussed 

later). 

 A Feed has a universal resource identifier (URI), 

which means it can be accessed unambiguously on 

the internet. 

 One entity can publish Activities to own or another 

entity's Feed. In the same way, one entity can 

subscribe to another entity's Feed and in this way 

receive notifications about Activities in that Feed. 

 Activities are accumulated in a Feed and are kept as a 

history. This allows a Feed to function as a 

chronological context for the entity. 

B. Activity 

A Feed is created by entities publishing Activities into the 

Feed based on real world events. An Activity is a construct 

that provides information about the nature of the event and its 

context. We have based our definition of an Activity on the 

definition provided by the Activity Streams specification[2]. 

An Activity is constituted by the following parts: 

 Actor: represents the entity that performs the action. 

 Verb: represents the type of the action performed. 

 Object (optional): represents the entity primary object 

(subject) of the action. 

 Target (optional): the substantive to which the action 

refers. 

 Provider (optional): the identity of the entity that 

publishes the activity on behalf of the Actor. 

Figure 2 shows how a real world event "John sends a letter to 

Maria" maps onto an Activity. 

 
Figure 2: Activity example 

The main motivation for defining a standard for Activities 

and Feeds (such as in OpenSocial) has been to facilitate 

exchange of Activities among various social computing sites.  

Our research builds on this line of development. In addition 

we use Activities and Feeds to support communication among 

people and things. We will see how this is done later as we 

describe some of our implementation examples. 

C. Persons, Things and Communities 

The entities in our framework currently belong to one of 

the three types of Person, Thing and Community. A Person 

represents a real human being, while a Thing represents a 

physical or digital artifact. A Community represents a 

collection of Persons and Things. All the entities, regardless of 

their type, have a Feed assigned to them (see Figure 3). An 

entity can publish to its own Feed or publish to the Feed of 

another entity. In the same way an entity can subscribe to its 

own Feed or subscribe to another entity's Feed (publishing and 

subscribing are normally subject to access rights in an 

implementation of the framework). A Community is different 

from the two other entity types in that it also contains an 

explicit list of members that is visible to all the Persons and 

Things that are the members of the Community. 

John sends a letter to Maria

Actor verb object target

John sends a letter to Maria

Actor verb object target



 

©20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current 

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective 

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final 

publication is available via https://doi.org/10.1109/IE.2013.24 

 

 
Figure 3: Entities in our framework are Things, People and Communities. 

D. Example use cases 

Based on the above concepts we describe here a set of 

example use cases that illustrate how the framework can be 

used to achieve the goal of implementing a light-weight 

communication framework for PESI. 

1) Publishing to a feed as a means of sending a command 

One of the most important use cases is to allow a Person or 

a Thing send a command to another Thing. The goal is to 

activate the receiving Thing to do something. In this case an 

Activity is created to contain the command where the verb is 

the desired action on the side of the receiving Thing. In Figure 

4.A the activity is "John (actor) /brew (verb) /coffee (object) 

/coffee machine (target)". This activity is then published to the 

coffee machine Feed triggering the machine to brew coffee. 

 

2) Subscribing to a feed as a means of being notified about 

context changes 

Subscribing in our framework allows an entity to be notified 

when an Activity is published in a Feed. This can be used to 

signal changes in context, which in turn can lead to actions. 

For instance, subscribing to the coffee machine Feed in the 

example above will notify the subscribing entity when the 

coffee is ready, i.e. when the coffee machine publishes an 

Activity into its own Feed (see Figure 4.B). 

 

3) Using a Community as a means to share context 

Publishing or subscribing to a Community's Feed can be 

used to maintain a shared context for a group of Persons and 

Things. In this case entities join a Community (become 

members) in order to demonstrate interest in shared context. 

All members of a Community can publish to the Community's 

Feed, and all members are notified about published Activities. 

For instance, John can publish an Activity to the Feed of the 

Community created for his work team in order to inform 

members that coffee will soon be fresh-brewed. The 

Community is in addition responsible for providing social 

transparency by maintaining a list of members that is visible to 

all members.  

 

4) Light-weight and loose composition 

As we will see later in the example applications, Things can 

publish and subscribe in various combinations. The 

framework can be used as a light-weight composition 

mechanism. For instance, the coffee machine can publish an 

Activity to a bell and make the bell ring when coffee is 

brewed. 

 

5) Using Feed history as a means to learn and personalize 

All activities published to a Feed are in theory available for 

later inspection, analysis, merging, aggregation etc. This 

means that the Feed can be used as a source of learning about 

the entity and personalizing the behavior of the system 

according to the learned knowledge. 

 

 
Figure 4: Two example use cases for the framework. 

III. APPLICATIONS OF THE FRAMEWORK 

In this section we describe two applications of our 

communication framework. These applications illustrate how 

the framework is used in two realistic scenarios, and allow us 

to some extent answer the following two questions: 

 Can we use concepts from social computing, in 

particular the Activity Feed concept, to implement a 

light-weight communication framework for PESI? 

 Will this framework make it easier to develop new 

applications for PESI? 

The applications described here are from two very 

different domains. The first application is from crisis 

management domain where communication among the 

members of a rescue team is supported using a smart jacket. 

The second scenario is from ambient assisted living domain, 

where a fall detection application is used to support the 

inclusion of informal caregivers in fall management. The fall 

itself is detected using sensors connected to a smart phone. 

Both applications exist in form of prototypes implemented in 

the Android operating system on top of UbiShare, which is an 

implementation of our communication framework for 

Android-based mobile devices (UbiShare will be described 

later). 

A. Supporting Rescue Work 

A major challenge for rescuers operating in a crisis field is 

to support cognitively demanding tasks with the use of 

communication and collaboration tools. For instance, even the 

most user-friendly mobile devices today require full attention 

when interacting with them. But such full attention cannot be 

expected from a rescuer in the field. To address this challenge, 

we explored physical user interfaces that can be integrated in a 

smooth and non-obtrusive manner with the rescuer's physical 

environment. A smart jacket that we have developed[4] is an 

example of such an interface. The smart jacket, called iJacket, 

is equipped with a number of actuators:  an LCD display, a 

En
tity Fe

e
d

Th
in

g Fe
e

d

Perso
n Fe

e
d

Community

Fe
e

d

M
e

m
b

e
rs

Is-A
Is-A Is-A

Coffee 
Machine

"John/ brew/ coffee/ 
coffee machine"

publishes

Coffee 
Machine

publishes

"coffee machine/ 

brew/ coffee/ self"

notification

A) Publishing to a feed: sending commands B) Subscribing to a feed: notifications



 

©20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current 

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective 

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final 

publication is available via https://doi.org/10.1109/IE.2013.24 

 

vibrator and a loudspeaker. iJacket allows the coordinator of a 

rescue team to draw the attention of the rescuers in the team 

and to provide them with information and commands. Using a 

normal jacket as the platform we avoid distracting rescuers 

from their work. iJacket communicates with Android smart 

phones using Bluetooth, and is implemented using the 

Arduino hardware platform for physical prototyping[5]. 
Our application for rescue work consists of two parts, 

iJacket and iDisaster (see Figure 5). iDisaster is an application 

that allows team coordinators to create and organize rescue 

teams. iDisaster also supports interactions among team 

members by sending text messages and using iJacket for 

communication. iJacket, supports unobtrusive communication 

among rescuers by mediating text messages sent to rescuers. 

When the coordinator sends a text message to the rescuers, 

iJacket's vibrator and loudspeaker are activated and the 

message is shown immediately on the LCD display. 

 

 
Figure 5: Rescue scenario: SW modules and main interactions. 

Figure 6 shows how our communication framework is 

used to support this application. The first step is for the 

coordinator to create a rescue team consisting of the 

coordinator and rescuers (step 1 in Figure 6). Each rescuer has 

an iJacket that subscribes to the rescuer's Feed. When the 

coordinator sends a text message, this message is published in 

form of an Activity in the Community's Feed (step 2) and 

notifications are sent to rescuers who are members of the team 

(step 3). When the notification is received, iDisaster publishes 

a new Activity in the rescuers' Feed (step 4) which triggers a 

notification to the iJacket of the rescuer(s) to which the 

notification is addressed (step 5). iJacket does its job 

(vibrating, sounding alarm and displaying the message), and 

publishes an Activity to its own Feed (step 6). Note that 

publishing Activities to Feeds is a convenient way of notifying 

all the interested People and Things (i.e. sharing context 

information). For instance, the iJacket Feed might trigger a 

notification back to the Community (not shown in the figure) 

in this way letting the coordinator know that messages were 

received. In addition, using Activity Feeds as a 

publish/subscribe hub enables loose coupling among people 

and things. For instance, if the rescuer adds a new Thing, such 

as a helmet with a wireless headset, the Thing can be 

integrated easily by creating a subscription relation between 

the person and the helmet. Moreover, it is also possible (not 

implemented in our application) to have Things that are 

associated with the community. For instance a satellite 

surveillance Thing could be added directly as a member of the 

Community and be accessible by all the members of the team. 

 

  
Figure 6: Using the framework in the rescue application 

B. Managing Falls Among Elderly 

Our next example application is from the domain of 

ambient assisted living. Falls are one of the most serious 

incidence groups among elderly. Falls often result in hip 

fractures. In most cases the injury results in permanent 

disability. Falls are psychologically demanding, both for the 

victim and for the informal network of family members and 

friends. 

Our application for fall detection, called UbiFall (see Figure 

7), is developed based on the assumption that detecting falls at 

e.g. home can happen faster and more efficiently if the 

informal social network of the person at risk is involved in the 

process of fall management[6]. UbiFall allows a fall manager 

(e.g. in a monitoring center in a hospital or care center) to 

register a person at risk of fall and associate a group of family 

members or friends to that person. This is shown in Figure 7.A. 

The left-most part of the window here shows the list of the 

elderly that are monitored by the monitoring center (with 

number 3 Robert selected). The middle part shows information 

about the person being monitored (Robert). At the bottom of 

this middle part is the list of people added as the members of 

this person's informal network (Alice and Michael). The right-

most window in Figure 7.A shows an ongoing communication 

among the involved people regarding the situation after a fall 

sensor has sent a message that a fall is detected.  

 

Coordinator 

1. Create teams 
2. Add rescuers to teams 

3. Interact with rescuers iDisaster 

iDisaster 

Rescuer 

Other rescuers 

1. Interact with the coordinator 
3. Interact with other rescuers 

iJacket 

Android'
Phone'

Android'
Phone'

Community	

Fe
e
d
	

M
e
m
b
e
rs	

1)	Create	team	

Rescuer		
(Aage	Lillefot)	

Coordinator	

iDisaster 

Fe
e
d
	

Fe
e
d
	

Rescuer	
	(Ola	Gullkjede)	

iDisaster 
iDisaster 

iJacket 

2)	Publish	message	

3)	No fy	

3)	No fy	

4)	Publish	message	

4)	Publish	message	

5)	No fy	

6)	Publish		
message	

Fe
e
d
	

Fe
e
d
	

Fe
e
d
	

iJacket 



 

©20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current 

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective 

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final 

publication is available via https://doi.org/10.1109/IE.2013.24 

 

 
Figure 7: The Fall detection application: screenshots 

Figure 7.B shows UbiFall when used by the members 

of the informal network of the person at risk. Here the user 

sees messages sent by the fall manager, the sensors and the 

other members of the network. The person at risk has a much 

simpler user interface to UbiFall (Figure 7.C). This interface is 

mainly a large button that can be pushed to prevent an initiated 

fall alarm from being sent. The elderly person can push this 

button in cases when the sensor creates a false alarm. 

Figure 8 shows how our communication framework is 

used to support the implementation of UbiFall. Each person 

involved (Fall Manager, Daughter, Neighbor and Elderly) is 

represented by a Person with a dedicated Feed. In addition, the 

sensor on Elderly's smart phone is represented as a Thing with 

its own Feed. As the first step, Fall Manager creates a 

Community to represent the network of the people involved in 

fall management (step 1 in Figure 8). Shortly after the network 

is set up, the fall sensor detects a fall. The sensor publishes a 

"sensor/detect/fall" Activity to its own Feed (step 2), which 

generates a notification to the Elderly application (step 3). 

Once Elderly UbiFall application receives the notification it 

allows Elderly to prevent the alarm from being sent (e.g. if the 

fall sensor generated a false alarm). If the alarm is not 

prevented (i.e. Elderly has really fallen) the Elderly 

application publishes an "elderly/trigger/alarm" Activity to the 

Feed of its network (step 4). The network notifies all the 

people in its member list (step 5). The alarm Activity shows 

up in the Community Feed visible to community members (as 

show in Figure 7.B) and can trigger further actions. The 

members of the network can continue publishing messages or 

other types of Activities into the Community Feed in order to 

coordinate their actions. 

 

 
Figure 8: Using Feeds in the Fall Detection application 

The above two applications show how the basic patterns of 

publishing and subscribing to feeds can support fairly 

complicated scenarios involving many different actors. The 

applications also show that the same concepts are used for 

People, Things and Communities, allowing a uniform set of 

concepts and simplifying application development. In the next 

section we will introduce UbiShare, a reference 

implementation of the PESI communication framework. 

IV. REALIZATION 

We have created a reference implementation of the PESI 

communication framework for Android smart phones with a 

set of APIs for creating and managing Persons, Things, 

Communities, Feeds and Activities. The goal for this reference 

implementation is to validate the concepts and to investigate 

whether we can simplify the development of applications such 

as the ones described in the previous section. The above two 

applications are implemented on top of this reference 

implementation as shown in Figure 9 and described below.  

 

 
Figure 9: The reference implementation for the framework. 

Here we describe mainly the part of the reference 

implementation for smart phones since this part is most 

relevant for the described applications. Framework concepts 

such as Persons, Things, Communities, Feeds and Activities 

A) UbiFall for 
Fall Manager

B) UbiFall for the 
Network

C) UbiFall for 
Elderly

Fe
e

d

Fe
e

d

Community

Fe
e

d

M
e

m
b

e
rs

Fe
e

d Fall 
sensor

1) Create community

3) Notify

4) Publish

5) Notify

5) Notify
5) Notify

2) Publish

Fe
e

d

Daughter

Fe
e

d

Neighbour

Fall 
Manager

Elderly



 

©20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current 

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective 

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final 

publication is available via https://doi.org/10.1109/IE.2013.24 

 

are managed on smart phones by a component called 

UbiShare[7] (see Figure 9 the middle part). UbiShare utilizes 

the content provider concept in Android[8] in order to provide 

standardized access to a data model consisting of the main 

framework concepts. A content provider is the Android 

standard mechanisms to encapsulate access to shared 

structured data. A content provider provides access to data 

using a simple CRUD (Create, Retrieve, Update, and Delete) 

API. It is easy for an Android programmer to create 

applications on top of a content provider due to its simple and 

standardized API. The API provided by UbiShare allows an 

application programmer to: 

 Create and manage Persons, Things and 

Communities. 

 Create and manage membership of Persons in 

Communities. 

 Create and manage membership of Things in 

Communities. 

 Publish Activities to any type of Feed. 

 Get notified when an Activity is published to a Feed. 

 Query and display all the data related to the 

communication framework. 

The data that is created and stored in UbiShare is 

synchronized with back-end services (the left part of Figure 9) 

using Android's standard mechanism called a sync adapter. It 

is possible to create sync adapters for multiple back-end 

services, allowing UbiShare's data (or parts of it) to be 

synchronized with various services. Currently we have two 

synchronization mechanisms. One sync adapter uses the 

XMPP protocol [9] to synchronize data towards an OSGi[10] 
backend. A second sync adapter uses a cloud-based file 

system (Box.com) for synchronization. 

Communication with Things such as iJacket and fall 

sensors is implemented by creating an Android-based proxy 

application for each Thing (shown as "Android Applications" 

in Figure 9). In this way the Things can get access to the API 

provided by UbiShare, get their own private Feed, and 

subscribe and publish to other Feeds. Communication with the 

physical Thing itself can be done using any communication 

mechanism available on the device. Our current 

implementations of iJacket and fall sensors are based on 

Bluetooth, which was our preferred choice due to the wide-

spread availability of Bluetooth on mobile and embedded 

devices. Currently the iJacket and the fall sensor used in our 

applications are implemented using the Arduino physical 

prototyping platform[5]. We have implemented a dedicated 

Bluetooth library that allows wireless communication between 

an Arduino and an Android application[11]. 
Developing an application on top of UbiShare requires a 

few steps to be taken by the developers: 

 Defining an Activity glossary: Activity types are 

defined by application developers and depend on 

what the developers consider to be meaningful 

actions performed on allowed types of Persons, 

Things and Communities. For instance, each of the 

application domains of rescue work and fall 

management will have their own glossary of 

Activities. The developer has to define the meaning 

of the Activities. In particular a glossary of verbs and 

objects should be defined. We anticipate that such 

glossaries will be reused as more applications are 

built using our framework. 

 Configuring Feed settings: the developer has to 

configure the Feed settings for the Persons, Things 

and Communities in his/her application. This means 

deciding which entities can subscribe/publish to the 

entity's Feed and how the entity will 

publish/subscribe to other entities' Feeds. This is an 

important step, as the Feeds to be used will be the 

communication channels to/from each entity. As we 

have seen in the case of rescue and fall management 

applications, different options exist when using the 

publish/subscribe patterns.  

 Using the API to publish/subscribe to the feeds: The 

developer has to incorporate in his entity's source 

code the API calls to publish/subscribe to the proper 

Feed. Publishing to a Feed requires calling an insert 

method on the content provider API. Subscribing to a 

Feed requires implementing a so-called "content 

observer" (callback) and processing notification 

messages. 

 Translating Activities into actions: The remaining 

work for the developer consists of filtering and 

parsing incoming or outgoing Activities in 

accordance with the glossary defined in step 1, and 

performing the actions that match the Activities. 

V. RELATED RESEARCH 

Communicating with things through seemingly humane 

means is not limited to science fiction or AI-based robotics. 

For quite a long time people have been communicating with 

their things using the same ICT-based tools that they use to 

connect with their colleagues and friends. Early examples 

include software engineering teams, where instant messaging 

or email tools are used to communicate with continuous 

integration systems. So it is not uncommon to have Jenkins (a 

continuous integration tool) and Nabaztag (a cute rabbit pet) 

as your "friends" in Jabber or Gtalk, and have them talk with 

you about build failures[12]. With the advent of social 

networks as a major means of online communication among 

people, we also see a growing number of initiatives trying to 

use similar techniques (e.g. feeds) to interconnect things. For 

instance, Ericsson's social web of things[13], SenseFace[14] 

and the Twitter applications reported in[15] are all attempts to 

integrate data from physical sensors with online social 

networks.  Our work builds on the experience from this type 

of research, and attempts to take this research a step further by 

building a unified framework and APIs for integration of 

people and things. In fact, most of the reported work in this 

area focuses on building a separate internet of things (albeit 

using techniques from online social media) while our aim is in 



 

©20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current 

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective 

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final 

publication is available via https://doi.org/10.1109/IE.2013.24 

 

addition to investigate the effect of mixing people and things 

in hybrid social networks. 

Activity feeds in particular have gradually become an 

important part of any social media. The idea of having a data 

feed for things is used in a number of IoT platforms. One 

popular example is Cosm[16], a commercial platform that 

allows its users to assign a web address to their things such as 

sensors and devices. The web address works a lot like a feed, 

and can be used to query sensor data, receive notifications, 

and provide an RSS (Really Simple Syndication) feed to the 

data collected from the sensor. Similar other platforms include 

open sen.se[17], Evrythng[18] and ThingSpeak[19], all of 

which provide some form of feed to access sensor data. These 

platforms are all underpinning our research, and provide a 

solid platform for the realization of our conceptual framework. 

However, we need to keep in mind that these platforms are 

mainly developed for things and not people. In particular the 

concept of a feed used in these platforms is often specialized 

in the direction of connecting and controlling things and not 

for communication between/among humans and things. We 

hope our framework can be used to guide the further 

development of such platforms and help experimentation with 

thing-human integration. In fact, our future research includes 

integrating the Thing Feed in our framework with some of 

these platforms. 

In general, we can claim that our research advances 

state of the art 1) by focusing on the integration of human-

thing communication and not only on connecting things to 

social media, and 2) by attempting to develop a unified 

framework and APIs that can be used by application 

developers to support human-thing communication. 

 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented a framework for PESI 

based on using a familiar concept from social networking 

services, the activity feed. We have defined the framework 

and have demonstrated its utility using two different sets of 

applications from the domains of rescue work and elderly fall 

management. We have also described UbiShare, a reference 

implementation of the framework demonstrating a set of APIs 

used to build the applications. All the applications and 

UbiShare itself are available as open source implementations 

and can be downloaded from GitHub [20] or obtained by 

contacting the authors. 

The work presented in this paper demonstrates the 

feasibility of using the same framework of concepts (and the 

same set of APIs) to develop applications consisting of things, 

people and communities of things and people. The advantages 

of using activity feeds as the basic concept are many. Activity 

feeds are supported by many existing social computing and 

IoT platforms, which makes them ideal as a tool for 

integration. As demonstrated here and in related research, 

feeds can also be used as a shared language understandable by 

both people and things. The historical data about events stored 

in feeds can be used to perform advanced learning and 

personalization tasks (see e.g. [21]). We believe a unified 

framework can accelerate the development of a number of 

interesting applications where people and things need to co-

exist. 

We have not yet validated whether programming efforts on 

the side of application developers will be reduced by using our 

framework. This is one important direction for our future 

research. Achieving this goal will depend on how good the 

APIs and the implementations of the framework will be. But 

we can informally notice that the number of concepts that the 

programmers need to know is considerably reduced. Our 

future work consists of refining the framework and its APIs by 

developing new applications that can demonstrate its utility. 

The framework in its current form is quite generic. We need 

more experience in using the framework in order to discover 

the most useful patterns and the most efficient ways of 

developing applications. 

Regarding the implementation of the platform, our future 

work will focus on implementing a number of new sync 

adapters for some of the IoT platforms discussed in Related 

Research. We will also continue simplifying application 

development by providing utility skeleton classes for different 

types of applications. 

 

ACKNOWLEDGEMENT 

The work presented here is supported by the 

European R&D projects SOCIETIES and FARSEEING. We 

thank all our colleagues in these two projects for fruitful 

discussions. iJacket was first developed by Group 10 in 

subject IT2901 at NTNU[22] and later refined by us. Box.com 

synchronization for UbiShare is being implemented by MSc 

student Kato Stølen at NTNU. UbiFall applications are 

developed by MSc student Andreas Lund at NTNU. We thank 

the members of Group 10, Kato and Andreas for their efforts. 

 

 

 

REFERENCES 

 
[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” 

Scientific American, vol. 284, no. 5, pp. 34–43, 2001. 

[2] Diso Project, “Activity Streams - a format for syndicating social 
activities around the web,” 2013. [Online]. Available: http://activitystrea.ms/. 

[Accessed: 03-Mar-2013]. 

[3] M. Häsel, “Opensocial: an enabler for social applications on the web,” 

Communications of the ACM, vol. 54, pp. 139–144, Jan-2011. 

[4] M. Divitini, B. A. Farshchian, J. Floch, B. M. Mathisen, S. Mora, and T. 

Vilarinho, “Smart Jacket as a Collaborative Tangible User Interface in Crisis 
Management,” in Proceedings of the Workshop on Ambient Intelligence for 

Crisis Management, Pisa, Italy, 2012. 

[5] M. Banzi, Getting started with Arduino. Beijing; Cambridge: 
Make:Books / O’Reilly, 2009. 

[6] A. Lund, “UbiCollab: Twitting Falls- UbiFall,” Norwegian University of 
Science and Technology (NTNU), Trondheim, Norway, TDT4501, 2012. 

[7] UbiCollab.org, “UbiShare,” GitHub, 2013. [Online]. Available: 

https://github.com/UbiCollab/UbiShare. [Accessed: 03-Mar-2013]. 
[8] Android Developers portal, “Content Provider Basics,” 2013. [Online]. 

Available: http://developer.android.com/guide/topics/providers/content-

provider-basics.html. [Accessed: 05-Mar-2013]. 



 

©20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current 

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective 

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final 

publication is available via https://doi.org/10.1109/IE.2013.24 

 

[9] The XMPP Standards Foundation, “The Extensible Messaging and 

Presence Protocol (XMPP),” 2013. [Online]. Available: 
http://xmpp.org/about-xmpp/. [Accessed: 03-Mar-2013]. 

[10] R. Hall, K. Pauls, S. McCulloch, and D. Savage, OSGi in Action: 

Creating Modular Applications in Java, 1st ed. Manning Publications, 2011. 
[11] A. B. Eie, H. Goldsack, J. Jansen, A. Lucassen, E. Di Santo, J. Svarvaa, 

and B. H. Wold, “oSNAP- Open Social Network Arduino Platform,” 

Norwegian University of Science and Technology (NTNU), Trondheim, 
Norway, IT2901 final report, 2012. 

[12] Jenkins developer community, “Nabaztag Plugin for Jenkins,” 2013. 

[Online]. Available: https://wiki.jenkins-
ci.org/display/JENKINS/Nabaztag+Plugin. [Accessed: 03-Mar-2013]. 

[13] M. Alendal, “The social web of things – a social network for your 

devices - Ericsson.” [Online]. Available: 
http://www.ericsson.com/thinkingahead/idea/110217_social_network_for_you

_1968920151_c. [Accessed: 03-Mar-2013]. 

[14] M. A. Rahman, A. El Saddik, and W. Gueaieb, “SenseFace: A sensor 
network overlay for social networks,” in IEEE Instrumentation and 

Measurement Technology Conference, 2009. I2MTC  ’09, 2009, pp. 1031 –

1036. 

[15] M. Demirbas, M. A. Bayir, C. G. Akcora, Y. S. Yilmaz, and H. 

Ferhatosmanoglu, “Crowd-sourced sensing and collaboration using twitter,” 
in World of Wireless Mobile and Multimedia Networks (WoWMoM), 2010 

IEEE International Symposium on a, 2010, pp. 1 –9. 

[16] Cosm, “How Cosm Works,” 2013. [Online]. Available: 
https://cosm.com/how_it_works. [Accessed: 03-Mar-2013]. 

[17] Sen.se, “Feel, Act, Make sense • Sen.se,” 2013. [Online]. Available: 

http://open.sen.se/. [Accessed: 03-Mar-2013]. 
[18] Evrythng, “About | EVRYTHNG,” 2013. [Online]. Available: 

http://www.evrythng.com/about-us/. [Accessed: 03-Mar-2013]. 

[19] ThingSpeak, “Internet of Things - ThingSpeak,” 2013. [Online]. 
Available: https://www.thingspeak.com/. [Accessed: 03-Mar-2013]. 

[20] UbiCollab.org, “UbiCollab@GitHub,” 2013. [Online]. Available: 

https://github.com/UbiCollab/. [Accessed: 05-Mar-2013]. 
[21] J. Freyne, S. Berkovsky, E. M. Daly, and W. Geyer, “Social networking 

feeds: recommending items of interest,” in Proceedings of the fourth ACM 

conference on Recommender systems, New York, NY, USA, 2010, pp. 277–
280. 

[22] UbiCollab.org, “Your jacket can now talk to Facebook!,” 2012. 

[Online]. Available: http://ubicollab.org/z/2012/05/25/your-jacket-can-now-
talk-to-facebook/. [Accessed: 05-Mar-2013]. 

[1]  


