
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Designing an Application Store for the Internet of
Things: Requirements and Challenges1

Simon Stastny1, Babak A. Farshchian2(x), Thomas Vilarinho2

1Norwegian University of Science and Technology, Trondheim, Norway
stastny.simon@gmail.com

2Stiftelsen SINTEF, Trondheim, Norway
{babak.farshchian, thomas.vilarinho}@sintef.no

Abstract. Although things in the Internet of Things contain considerable
amounts of software, developers of such software have no standardized means of
maintaining, improving and sharing this software as they can do, e.g., with appli-
cations on a smart phone. This limitation can hamper user-driven innovation. In
this paper we evaluate the usefulness of the "app store" metaphor as a means of
sharing and deploying Internet of Things software among makers. We did a set
of interviews and a questionnaire-based survey with a sample of makers in vari-
ous maker communities. We used this data to extract requirements for an appli-
cation store, using the common "app store" metaphor as a starting point. The app
store concept was developed as a proof of concept implementation, and evaluated
through feasibility evaluation and focus group evaluation methods. Our findings
show that although the app store metaphor is familiar and easy to grasp, there are
some fundamental challenges when adapting the metaphor: 1) The difficulty of
supporting the diversity in the software and hardware vendor market, 2) The ten-
sion between context awareness and the need for pre-configuration and pre-pack-
aging, and 3) usability challenges related to the number of devices and apps.

Keywords: Internet of Things, IoT, app store, application repository, app instal-
lation, app deployment, app sharing, ambient intelligence, ubiquitous computing,
pervasive computing.

1 Introduction

The Internet of Things (IoT) is defined as "the pervasive presence around us of a
variety of things or objects –such as...tags, sensors, actuators, mobile phones [that] are
able to interact with each other and cooperate with their neighbors to reach common
goals"[1]. IoT can be seen as the enabling technology for many of the applications that
are envisioned by the Ambient Intelligence (AmI) community. The exponential growth

1 This is a post-peer-review, pre-copyedit version of an article published in AmI 2015. Lecture

Notes in Computer Science, vol 9425. Springer, Cham. The final authenticated version is
available online at: https://doi.org/10.1007/978-3-319-26005-1_21

of the IoT can therefore be seen as an opportunity to realize some of these visionary
scenarios.

When talking about IoT, the obvious thing that comes to our mind is the thing or the
physical object. But we should not forget that IoT's value propositions are equally based
on the software that runs these things. This software can be present in many forms:
embedded, middleware, applications, service composition logic, and management tools
[1, 2]. Our interest in this study is related to the embedded software and the manage-
ment tool used to share, distribute and deploy this software. Using popular denotations
from the smartphone domain, we call the collection of these management tools the IoT
app store. We also call the embedded software that resides in the things for IoT app.

IoT apps are in a transition from being "embedded" into IoT things—i.e. being in-
separable from and secondary to the thing itself—to becoming an independent and cen-
tral business asset. In many domains nowadays "firmware upgrades" start getting more
attention than product releases—see for instance firmware upgrades for Leica digital
cameras. Software engineering practices related to maintaining, upgrading and releas-
ing "firmware" are becoming important topics even in industries such as automotive,
where the physical product plays a central role [3]. Some have even gone so far to
consider the physical product—the thing—as being secondary to the software that runs
on it [4].

When the IoT app becomes a separately tradable asset, it becomes also interesting
to look into tools that can support its trade. We already have the popular example of
smartphone application stores such as those of Apple, Google and Amazon [5]. These
stores have played a central role in grassroots and third-party initiated innovation in the
area of smartphone apps [6]. User-driven innovation in IoT apps can be a strong vehicle
for a wider uptake of AmI. Preparing a marketplace for sharing such innovation is cru-
cial for nurturing and promoting this innovation [7]. However, due to limitations and
complexities that exist in current tools and technologies, such innovation is mostly hap-
pening in specialized communities such as among researchers [8, 9] and maker/hackers
[10]. As researchers, our interest is drawn to maker/hacker communities, and how their
members share their innovations. We believe maker communities, being early adopters
[11], can provide us with important insights into how the IoT app landscape will look
like in the near future.

In this paper we will present a study of how the app store metaphor might be adapted
to IoT. Our research question is "what are the requirements and challenges for an app
store for IoT?" We have studied a number of makers in order to understand the chal-
lenges they face when packaging, sharing and deploying IoT apps. We have used the
findings to extract requirements for an IoT app store concept called UbiBazaar. The
concept was developed as a paper prototype, evaluated in a focus group, and later im-
plemented as a proof-of-concept prototype. The paper will describe this study by first
discussing our method, data and findings from user studies. We will then present the
UbiBazaar proof-of-concept implementation, and discuss our findings.

2 Method and Approach

Our study uses the design science research methodology [12], where the research
activities are divided into the three cycles of rigor, relevance and design [13]. Here we
will shortly describe how we have taken these three aspects of the methodology into
account.

To ground our research in existing theory and related work and to clarify our contri-
bution (the rigor cycle in design science) we conducted a systematic literature review.
We ran a query in Scopus based on common phrases such as IoT, AmI, Pervasive and
Ubiquitous computing, software deployment, installation etc. We ended up with 164
hits (October 2014). Ten of these papers were retained after a screening based on title
and abstract [inclusion criteria: 1) paper is about deployment in IoT, 2) paper is about
app stores in IoT]. In addition, we have studied a number of other papers based on other
informal search and snowballing from references in the included papers. Details about
the literature study can be found in [14].

In order to increase the relevance of our research (the relevance cycle in design sci-
ence research) we conducted interviews and a survey with makers. Based on the find-
ings from the literature we conducted four in-depth semi-structured interviews with
four experienced makers and developers of IoT projects and software. The interview
topics were related to the nature of the IoT projects the interviewees were working on,
the methods they used to develop and deploy software, and the challenges they face in
the process. Details about the interviews, the interview guide and transcriptions can be
found in [14].

Based on the findings from the literature and the interviews we designed and pub-
lished an online questionnaire. We sent the questionnaire to a number of maker com-
munities (in total 8 communities) and asked their members to participate. In this ques-
tionnaire we wanted to investigate the means of software deployment, distribution, and
collaborative development. We also wanted to know which IoT platforms are popular
among makers. A total of 11 members from these communities responded to the ques-
tionnaire, and one of them was further interviewed by us.

Based on these results we designed a paper prototype and a proof of concept imple-
mentation of an IoT app store called UbiBazaar (the design cycle in the design science
research). The paper prototype was evaluated in a focus group workshop with four ex-
perts, the results of which guided the development of the software prototype.

The results from these studies will be presented in the following sections. Section 3
documents the literature study. Section 4 discusses our findings from the interviews and
the survey. Section 5 and 6 discuss the results from designing and evaluating UbiBa-
zaar.

3 Related Work

In this section we present an analysis of our findings from the literature. The section
is divided into three sub-headings: 1) general discussion of motivation and challenges

of using app stores in IoT and similar domains, 2) the challenge of the heterogeneity of
platforms and ecosystems, and 3) the challenge of changing context and configuration.

3.1 Software Deployment in IoT

Most non-technical people, when buying an intelligent "thing" or device, never up-
date or change the IoT app that comes with it. This has disadvantages because outdated
apps can mean outdated devices. Therefore maintaining, sharing and deploying IoT
apps are becoming increasingly common activities. These activities are mostly done in
three ways: 1) through proprietary "firmware upgrades", 2) through source code sharing
in open communities, and 3) through proprietary app stores.

Firmware upgrades are proprietary and cumbersome methods for updating IoT apps.
Most firmware upgrades require a high level of technical knowledge, such as down-
loading and unpacking files and specialized tools, and transferring files to devices using
specialized cables. Many companies are secretive about protocols used to do firmware
upgrades and don't allow third parties to develop firmware because of commercial or
security concerns. Some industries have been involved in attempts to standardize and
open up the firmware upgrade process. Makowski et al. [15] describe a standardized
method for upgrading firmware in the Telecommunications Computing Architecture
(xTA). Another example is the OSGi platform—used in e.g. automotive industry—that
has for many years provided advanced means for deploying so-called bundles onto an
OSGi runtime platform [16]. A recent standardization effort is based on using Docker2,
a deployment tool, together with Raspberry Pi. This Docker-based method is demon-
strated in our concept of UbiBazaar, to be discussed later.

IoT and its physicality have been a contributing factor to the emergence of strong
maker/hacker and Do-It-Youself (DIY) communities in recent years [10]. These com-
munities have gradually developed their own channels of sharing and deploying IoT
apps. One of the major channels used is configuration management tools such as Git.
Github and specialized portals—such as those of Arduino and Raspberry Pi—are used
as channels for distributing open source code for IoT apps. Although popular among
makers and DIY communities, this is a complicated method for many people as it in-
volves interacting with code repositories, and configuring and compiling code. As we
will see later, the makers we interviewed were looking for better ways of distributing
their IoT apps than through code repositories.

The third method of deploying software—i.e. using app stores—is gaining in popu-
larity as app stores in general have become a common household tool for everyone
including users [5] and developers [6]. What is probably the main advantage of app
stores is their user-friendliness both for providing and consuming packaged apps. App
stores are suggested by others as means of deploying IoT apps to general public [7, 17,
18] or for research purposes [9, 19]. There are emerging initiatives for building such
app stores (see for instance "The Pi Store" for Raspberry Pi3 or Android Market for

2 www.docker.com
3 store.raspberrypi.com

Wear 4). These existing initiatives are mainly attempts to repeat the success of
smartphone app stores, but do not take into consideration the challenges of IoT, perva-
sive and ubiquitous computing and AmI such as the heterogeneity of platforms and the
context-awareness of IoT apps.

3.2 Heterogeneous Platforms and Ecosystems

The most frequently mentioned challenge in the literature we studied was the heter-
ogeneity of the IoT environments [17, 18, 20, 21]. This heterogeneity is regarded as an
issue that is harming the further uptake of IoT innovations, and leading to “a solution
that may be outdated quickly” [18]. This heterogeneity makes software deployment
harder, as the way a software artifact is deployed or even packaged is in many cases
platform-specific. Some works suggest this is the reason why we do not have standard-
ized distribution channels for IoT apps [17]: “The IoT industry doesn’t have a unified
hardware and software platform [which] greatly complicates the creation of distribution
channels for software applications.”

3.3 Configuration and Context Awareness

A challenge facing IoT app deployment is the need for local configuration of IoT
apps due to their varied and changing context. IoT systems are formed by a number of
interconnected things, which need to be paired, registered, or configured in order to be
able to work together [1]. This configuration is unique for each situation, which makes
it difficult to distribute pre-packaged standard IoT apps.

Some researchers [20–23] suggest addressing the challenge of configuration by em-
ploying runtime self-configuration mechanisms [24]. Self-configuration can be
achieved through context- awareness, i.e. automatically reacting to changes in other
parts of the system and the operational environment.

Another approach to configuration and context awareness is to allow users do the
configuration through e.g. end user configuration [25, 26]. Both end user configuration
and automatic configuration are promising approaches that provide valuable input to
how an app store concept can deal with specific context of use for IoT apps. Our ap-
proach when developing the concept for UbiBazaar has been to define part of the con-
text—i.e. the device capabilities—handled by the app store, while letting IoT app de-
velopers chose the means to configuring the apps once installed.

4 Findings from the Interviews and the Survey

Our informants were involved in IoT projects making systems as diverse as sensor
systems for collecting data from crisis situations, ubiquitous smart home systems for
monitoring energy consumption, wearable fall detection systems for elderly, and de-
vices augmented with social computing features. Data from 5 in-depth interviews and

4 www.android.com/wear/

11 answers to survey questionnaires were analyzed using topic-based qualitative data
analysis. From this analysis three topics emerged, partly overlapping with our findings
from the literature: 1) diversity of deployment platforms, 2) cumbersome distribution
and deployment channels, and 3) context awareness vs. pre-configuration.

4.1 Diversity of Deployment Platforms

Most of our respondents use multiple hardware platforms in their projects, including
Arduino and Raspberry Pi as the most prolific. The respondents also mentioned other
platforms. See Fig. 2 for an overview of reported platform in our survey.

Fig. 2. Overview of the survey informants' usage of hardware platforms.

Another finding is the large number of device variants. A number of these devices—
such as Arduino and Raspberry Pi—consist of generic "boards" that can be equipped
with sensors, actuators and other peripherals of choice. This means that there is no
standard "Arduino device" or "Raspberry Pi device". Each device is potentially unique.
Most of the respondents also mentioned that they use multiple platforms within the
same project.

The wide variety of hardware platforms results in an even wider variety of deploy-
ment tools and mechanisms. While some platforms require use of specialized tools to
program a device—e.g. Arduino—other platforms require users to come up with their
own ad hoc means of deployment. Some platforms also require physical access to the
device—e.g. using a USB cable—while others support remote deployment over wire-
less network.

4.2 Cumbersome Distribution and Deployment Channels

The difficulty of distributing and deploying IoT apps was mentioned by a number of
our informants. In a number of cases the informants were working with projects where
the devices were not in their physical vicinity. This meant that they had invented ad hoc
means for remote installation of software, which did not seem to be so user-friendly:
- “I do all deploying myself, in this moment. But I do not have physical access to

all of those controllers...”

- “It would be nice if this [deployment] could be done wirelessly.”
- “...I really could see wireless deployment of upgrades coming down from the

cloud, that could be user-transparent, to be useful”

The informants had some thoughts about scalability of their home-grown deploy-

ment methods:
- “If the prototype gets further developed and maybe commercialized, of course

we would need a tool or a procedure to upload a new firmware to the Arduino”
- “It would be nice to automate build and deploy updates for the microcontrol-

ler...”
- “What would be useful is a dedicated server wrapping the build tool that would

provide building remotely as a service.”

Some commented how the IoT apps could be packaged in order to facilitate their

sharing and deployment:
- "If you’re going to produce thousands of Raspberry Pis that are customized for

this project then you would produce them all with this image that already has
this house-monitoring software installed. The other case is when you have some-
one who wants to create their own application and deploy it in the Raspberry
Pi.”

- “Typical deployment takes about six hours [...].If you already have a prepared
image for the Raspberry Pi, then the entire deployment takes about one hour”

- “[the application on Raspberry Pi] could be Dockerized, The Java component,
the GUI, the application that stores the different power which is a web applica-
tion written in PHP. This all can be packaged as a Docker file, kind of an in-
stallation script and then once someone takes a Raspberry Pi and installs
Docker and get this Docker file, he will have the service running. However there
is still pairing with the smart plugs to be done.”

Sharing of IoT apps with others is done manually through uploading, downloading

and compiling source files. This means that the recipient manually fetches the soft-
ware—downloads a binary package or source code—and then configures it as
wished—typically deploying the software, or doing changes to source code and then
building and deploying.

All the informants reported that they use source code repositories to share source
code of their software. Some use private code repositories, while others use it as a way
of releasing the sources for use by the general public. In addition to using popular ser-
vices such as Github, respondents frequently mentioned that they share the software on
community forums or through their personal website or blogs.

Some respondents mentioned distributing software in form of binaries or built pack-
ages. While these are easier for an end user to use, often they cannot be configured.
Two of the respondents also mentioned they publish their software on software store
such as the Pi Store.

4.3 Context Awareness vs. Pre-configuration

Local configuration emerged as a topic in our findings. In particular, network context
for the IoT apps was mentioned:

“The mobile talks to Arduino via Bluetooth and sends commands to it.”

- “In one deployment, the cottage, there is a Raspberry Pi connected with WiFi
USB connector to the WiFi network. In other deployments, Raspberry Pi is con-
nected with a network cable to the router.”

Other types of configuration mentioned included new sensors or actuators getting

connected to a board:

- “When you deploy for the first time the system needs to be manually configured
before you can use it."

- “[when a new plug is connected] user needs to assign it in the web interface.”

A related topic that has to do with local configuration is the awareness that our in-

formants had of the fact that they were part of a DIY prototyping community. They
were very clear about the fact that what they did was not commercial product develop-
ment, that they developed a personal prototype for their personal use, and that –when
shared –the product had to be customized by its new users:

- “If the prototype gets further developed and maybe commercialized, of course

we would need a tool or a procedure to upload a new firmware to the Arduino”
- “One of the ideas of Arduino is really just prototyping. In essence you use Ar-

duino to easily build your prototype, but afterward if you want to sell a product,
you go industrial-wise and you have sort of a personalization process [...] You
program the firmware to the board in the factory and you’re done."

- “It depends on in which moment you want to do [deployment] - if you want to
do this on the prototyping level, or the production level."

5 UbiBazaar: A Proof of Concept App Store for IoT

In order to further test our findings through design we developed a proof-of-concept
implementation of an IoT app store called UbiBazaar. UbiBazaar is based on a focus
group evaluation of an early paper prototype. The paper prototype was based on our
findings from literature and user studies. We first describe UbiBazaar in this section,
before we return to the paper prototype evaluation in the next section.

Requirement Rationale
1 UbiBazaar should support the basic

functionality and concepts found in
popular application markets such as in-
stant wireless installation of apps, and
easy-to-use interfaces for developers to
share apps.

Since we are testing the usefulness of the "app
store" metaphor, it is important that test users
can find UbiBazaar concepts similar to those
in common app stores, and as easy to use.

2 UbiBazaar should support multiple de-
ployment platforms, and be extensible
to other existing or emerging platforms.

Both the literature and our informants point to
the fact that IoT consists of multiple hardware
and software platforms.

3 UbiBazaar should be aware of and man-
age the capabilities of the devices be-
longing to a user.

Our findings show that IoT applications are
context-aware. A part of the context that we
think can be used by an app store is that of a
user's existing devices and their capabilities
such as on-board sensors, actuators and net-
work interfaces.

5.1 Start Page and Basic Functionality.

As we are using the app store metaphor as the underlying concept, it is important
that the users can get a feeling of visiting an app store when they visit UbiBazaar. The
basic functionality for enabling this feeling includes the ability to browse IoT apps and
their description, to search for IoT apps based on app category and other criteria, to log
in and store a personal profile, including personal apps and devices. In addition, in order
to allow support for multiple platforms, the apps are categorized based on the hardware
platform they are designed for.

5.2 Sharing New IoT Apps as Developer.

After a user registers, he/she can share IoT apps. The sharing process consists of two
steps (see Fig. 4): 1) define the basic metadata about the IoT app, and 2) select the
hardware platform the app can run on.

Fig. 4. Adding a new IoT app consist of two steps: 1) provide common metadata, and 2) select
hardware platform.

5.3 Maintaining a set of Device Definitions.

UbiBazaar allows the user to maintain a set of devices (see Fig. 5). The devices are
given a name and a description and are assigned a platform type, e.g. Arduino or Rasp-
berry Pi. Upon the registration of a device, a pairing and authentication process is per-
formed. It consists of installing an installation manager on the device (see later section
on the UbiBazaar architecture), and pairing this installation manager with UbiBazaar
server. After this pairing is done, the device can communicate with UbiBazaar in order
to query for content and to install/uninstall apps.

Fig. 5. Defining and maintaining a set of devices.

5.4 Installing an App on a Device.

UbiBazaar allows the user to browse for IoT apps that are compatible with a specific
platform—e.g. Raspberry Pi—and chose a device of that type to install the app (see
Fig. 6). UbiBazaar also allows the user to maintain the apps that are installed on each
device. Some devices, such as Raspberry Pi, allow multiple IoT apps on-board while
others—e.g. Arduino—do not.

Fig. 6. Installing an IoT app on a device.

5.5 UbiBazaar Architecture.

Fig. 7 shows UbiBazaar's architecture. It consists of a central UbiBazaar server
hosting a number of services for maintaining users and their personal profiles such
as apps and devices (upper part of the figure). The server also includes the web front-
end that was described in the previous sections. In addition to the server, a number
of installation managers are being developed. Installation managers are responsible
for implementing the communication between the devices—the things—and UbiBa-
zaar. This communication is necessary for querying the devices about their capabil-
ities and about the IoT apps they host. Fig. 7 shows how the installation managers
for Raspberry Pi and Arduino are implemented. Since Raspberry Pi is a full-fledged
Linux-based device with network capabilities, the device (thing) itself can host the
installation manager. Arduino is a much simpler device and for this reason we have
implemented the installation manager for Arduino as an Android app [27]. This app
then communicates with Arduino devices, using Bluetooth to send IoT apps to these
devices [28]. We have emphasized the definition and use of open APIs for commu-
nication between the components. These APIs are defined and documented in the
project web site [29].

Fig. 7. UbiBazaar architecture.

6 Evaluation

Based on findings from our field and literature studies, the initial concept of UbiBa-
zaar was developed as a paper prototype using the Balsamiq tool5. This prototype was
evaluated by a focus group of four makers (different than those who were initially in-
terviewed). The results from this focus group were used to refine the concept before it
was implemented as a reference implementation that was described in the previous sec-
tion. This section will provide an overview of the findings from this evaluation of the
paper prototype. The main concepts of IoT apps and devices were already demonstrated
in this paper prototype. In addition, we also demonstrated the installation and pairing
with devices of the type Raspberry Pi.

Streamlining of Concepts and Terminology- One of the main findings from the eval-
uation was the need to simplify the concepts used in the prototype. For instance, we
eliminated the use of the concept "Deploy" and "Download" and used instead concepts
such as "Install". See Fig. 8.

5 http://balsamiq.com/

Fig. 8. Moving from "Deploy" and "Download" to "Install".

Device Pairing and Authentication- The way UbiBazaar handles the first time pairing
with devices was discussed by the focus group. The discussion was due to the difficulty
of the concept, but also due to practical issues such as firewall configurations. The orig-
inal mechanism of device pairing and authentication was based on downloading a ge-
neric installer, installing the software and then configuring it manually. The focus group
found this too complicated for the user and suggested to simplify the process. For the
final solution, installation script with built-in credentials and auto-configuration were
used. For Arduino, Standard Bluetooth pairing is done on the Android device [28].

Managing Devices- The participants discussed how it will look like when the user has
many devices that can communicate with each other. Currently UbiBazaar maintains a
flat list of devices. Specifying device capability is not supported. The participants
wished to see some way of allowing the user tell UbiBazaar what devices can com-
municate with each other and how.

Trust and Security Concerns- Trustworthiness in IoT app stores has been addressed
by previous research [30] and was also a big concern for the focus group participants.
IoT has a potential to influence our daily lives in ways we may not even be able to
imagine yet. It is necessary to ensure that IoT apps, many of which will handle our
personal data and control our lives to a certain extent, are to be trusted and prevent
misuse by third parties. Although simple authentication is implemented in our proof of
concept, more research needs to be done in this area.

Social and Collaborative Aspects- The participants meant that UbiBazaar should not
only be an app catalogue but also a social platform with features such as ratings and
comments. Since IoT apps need local customizations much more than current
smartphone apps, the participants envisaged a more central role for social and collabo-
rative aspects in order to support collaborative customization.

7 Discussion

Using the app store metaphor in the context of IoT is an attractive idea, as witnessed
by both commercial and research-based initiatives discussed in this paper. The need for
an app store-like tool was raised in our user studies. UbiBazaar concept was easily un-
derstood and appreciated by our focus group participants. The metaphor is familiar, and
has shown to be successful in creating and maintaining sustainable ecosystems. It is
therefore natural to think about reusing the concept in the IoT domain. In particular,
some properties of IoT—e.g. large numbers of devices, devices without a management
interface, the need for remote management and so on [31]—would mean that a man-
agement tool such as an app store is the answer. However, our study shows that there
are some fundamental challenges facing this hypothesis.

The first challenge is that of the heterogeneity of hardware and software platforms.
Compared to the heterogeneity that we can see in IoT, even the smartphone platform
market seems very homogeneous. After more than a decade of smartphone develop-
ment we have not yet arrived at a common platform. So the journey towards a common
platform might be much longer for IoT. There are strong commercial interests con-
nected to app stores and the ecosystem surrounding them [32] that point in the direction
of even stronger proprietary ecosystems in the future. This will be a challenge for an
IoT app store that aims to support a heterogeneous set of things running different soft-
ware platforms. UbiBazaar architecture is a step in bridging the gap, but will have lim-
itations in supporting commercial, proprietary platforms.

The second challenge is that of context awareness. Smartphone context can arguably
be said to be much simpler than that of a typical IoT system consisting of tens of devices
each running various IoT apps. Uncritical application of app store concept to such sce-
narios will mean users will get overloaded with configuration and re-configuration
tasks. We need to build on findings from both context-aware and autonomous compu-
ting [24], but also use research done in the area of end user programming and end user
configuration [26]. The answer will probably lie in combining what the app store can
support, what the user can configure, and what the IoT system can/should automate.
The goal should be to work on a usable and useful tool for the user. Our approach in
UbiBazaar has been to keep UbiBazaar in charge of maintaining device capabilities,
and allow app developers decide the type of context-awareness and end user configu-
ration at the app level.

Our study has resulted in findings related to usability. What does it mean to deploy,
install or update an IoT app? How do we update remote devices? How do we know
which device we are updating? See [33] for a wide range of such issues that can apply
to IoT app stores. More research is needed within IoT app store usability.

We believe that maker communities form an ideal setting to do further research on
these issues. We see a need for an IoT app store among the makers we have talked to.
We also see makers as early adopters of technologies that will be available in every
household in the not so far future.

8 Conclusions

In this paper we have studied IoT apps and IoT app stores. We have presented em-
pirical evidence from user studies and the literature about the feasibility of using the
app store metaphor in the IoT domain. We have presented a proof-of-concept imple-
mentation of an IoT app store called UbiBazaar. UbiBazaar is implemented as an open
source project [29] and will be used as platform for further research in this area.

Our surveys (n=11) and interviews (n=5) should be repeated in order to refine and
generalize the findings. We believe however that the nature of the practices we have
studies is such that that most makers will have the same challenges as those we have
studied. Our future research will include studies of how UbiBazaar will be used by
makers.

We have focused our empirical investigations towards maker communities. Our as-
sumption has been that the needs of makers, being early adapters, can be generalized to
those of non-makers. We believe this is a hypothesis that can be tested in future re-
search, by evaluating UbiBazaar and related concepts with non-makers.

Our reference implementation UbiBazaar is only an early proof-of-concept proto-
type and needs to be extended in a number of directions. Of most interest for us are the
addition of support for collaboration, and the addition of functionality for specifying
device capabilities in a more detailed manner as a means for specifying a context for
IoT apps. We also think it will be important to add support for a wider variety of plat-
forms, in particular full support for Arduino.

Acknowledgements. This research was funded by the European FP7 projects OPTET
(317631) and CoSSMic (608806). We thank AmI 2015 reviewers for constructive com-
ments to the draft of the paper.

9 References

1. Atzori L, Iera A, Morabito G (2010) The Internet of Things: A survey. Comput
Networks 54:2787–2805.

2. Ebert C, Jones C (2009) Embedded software: Facts, Figures and Future. IEEE
Comput 4:42–52.

3. Broy M (2006) Challenges in automotive software engineering. Proc 28th Int Conf
Softw Eng 33–42.

4. Shih WC (2015) Does Hardware Even Matter Anymore? Harv. Bus. Rev.
5. Cuadrado F, Dueñas J (2012) Mobile application stores: Success factors, existing

approaches, and future developments. IEEE Commun Mag 50:160–167.
6. Holzer A, Ondrus J (2011) Mobile application market: A developer’s perspective.

Telemat Informatics 28:22–31.
7. Kortuem G, Kawsar F (2010) Market-based user innovation in the Internet of

Things. 2010 Internet Things 1–8.
8. Gellersen H, Kortuem G, Schmidt A, Beigl M (2004) Physical prototyping with

smart-its. IEEE Pervasive Comput 3:74–82.

9. Cramer H, Rost M, Belloni N, et al. (2010) Research in the large. using app stores,
markets, and other wide distribution channels in Ubicomp research. In: Proc. 12th
ACM Int. Conf. Adjun. Pap. Ubiquitous Comput. - Ubicomp ’10. ACM Press, New
York, New York, USA, p 511

10. Lindtner S, Hertz GD, Dourish P (2014) Emerging Sites of HCI Innovation:
Hackerspaces, Hardware Startups and Incubators. Proc SIGCHI Conf Hum Factors
Comput Syst 439–448.

11. Rogers EM (2010) Diffusion of innovations. Simon and Schuster.
12. Hevner AR, Salvatore T. March, Park J, Ram S (2004) Design Science in

Information Systems Research. MIS Q 28:75–105.
13. Hevner AR (2007) A Three Cycle View of Design Science Research. Scand J Inf

Syst 19:87–92.
14. Stastny S (2014) UbiBazaar - App store for the Internet of Things. Student thesis.

Norwegian University of Science and Technology. Trondheim, Norway
15. Makowski D, Jab G, Perek P, et al. (2013) Firmware Upgrade in xTCA Systems.

IEEE Trans Nucl Sci 60:3639–3646.
16. Parrend P, Frenot S (2007) Supporting the secure deployment of OSGi bundles.

2007 IEEE Int Symp a World Wireless, Mob Multimed Networks, 33:1–6.
17. Munjin D, Morin J-H (2012) Toward Internet of Things Application Markets. 2012

IEEE Int Conf Green Comput Commun 156–162.
18. Svendsen RM, Castejon HN, Berg E, Zoric J (2011) Towards an integrated solution

to Internet of Things - a technical and economical proposal. In: 2011 15th Int. Conf.
Intell. Next Gener. Networks. IEEE, pp 46–51

19. Davies N (2011) Beyond Prototypes, Again. IEEE Pervasive Comput 10:2–3.
20. Medvidovic N, Malek S (2007) Software deployment architecture and quality-of-

service in pervasive environments. In: Int. Work. Eng. Softw. Serv. ACM Press,
New York, New York, USA, pp 47–51

21. Hoareau D, Mahéo Y (2006) Middleware support for the deployment of ubiquitous
software components. Pers Ubiquitous Comput 12:167–178.

22. Zheng D, Wang J, Han W, et al. (2006) Towards A Context-Aware Middleware for
Deploying Component-Based Applications in Pervasive Computing. In: 2006 Fifth
Int. Conf. Grid Coop. Comput. IEEE, pp 454–457

23. Sung BY, Kumar M, Shirazi B (2005) Flexible and Adaptive Services in Pervasive
Computing. Adv Comput 63:165–206.

24. Kephart JO, Chess DM (2003) The vision of autonomic computing. Computer 36-
1:41.

25. Danado J, Paternò F (2014) Puzzle: A mobile application development environment
using a jigsaw metaphor. J Vis Lang Comput 25:297–315.

26. Paternò F, Tetteroo D, Markopoulos P, et al. (2015) End-User Development in the
Internet of Things Era. CHI’15 Ext Abstr.

27. Eriksen J et al. (2013) mC Software Store. Student report. Norwegian University of
Science and Technology. Trondheim, Norway

28. Eie AB et al. (2012) oSNAP- Open Social Network Arduino Platform. Student
report. Norwegian University of Science and Technology. Trondheim, Norway

29. Stastny S (2015) UbiBazaar project at Github.com. http://ubibazaar.github.io/.

30. Kang K, Pang Z, Xu L Da, et al. (2014) An Interactive Trust Model for Application
Market of the Internet of Things. IEEE Trans Ind Informatics 10:1516–1526.

31. Andersson J (2000) A deployment system for pervasive computing. In: Proc. Int.
Conf. Softw. Maint. ICSM-94. IEEE Comput. Soc. Press, pp 262–270

32. Eaton B, Elaluf-Calderwood et al. (2015) Distributed Tuning of Boundary
Resources: The Case of Apple’s iOS Service System. MISQ 39:217–243.

33. Bellotti V, Back M, Edwards WK, et al. (2002) Making sense of sensing systems:
five questions for designers and researchers. In: Proc. SIGCHI Conf. Hum. factors
Comput. Syst. Chang. our world Chang. ourselves CHI 02. pp 415–422

	1 Introduction
	2 Method and Approach
	3 Related Work
	3.1 Software Deployment in IoT
	3.2 Heterogeneous Platforms and Ecosystems
	3.3 Configuration and Context Awareness

	4 Findings from the Interviews and the Survey
	4.1 Diversity of Deployment Platforms
	4.2 Cumbersome Distribution and Deployment Channels
	4.3 Context Awareness vs. Pre-configuration

	5 UbiBazaar: A Proof of Concept App Store for IoT
	5.1 Start Page and Basic Functionality.
	5.2 Sharing New IoT Apps as Developer.
	5.3 Maintaining a set of Device Definitions.
	5.4 Installing an App on a Device.
	5.5 UbiBazaar Architecture.

	6 Evaluation
	7 Discussion
	8 Conclusions
	Acknowledgements. This research was funded by the European FP7 projects OPTET (317631) and CoSSMic (608806). We thank AmI 2015 reviewers for constructive comments to the draft of the paper.

	9 References

